CapSign Protocol
A Hierarchical Ownership Graph for Programmable Capital Markets

Version 1.0

CapSign, Inc.
February 2026

Abstract

CapSign Protocol introduces a novel architecture for representing ownership, capital, and
financial obligations as a hierarchical directed acyclic graph (DAG) on Ethereum-compatible
blockchains. Unlike traditional token standards that model assets as isolated contracts, CapSign
constructs a unified ownership graph where entities, wallets, tokens, and lots form an intercon-
nected structure that mirrors real-world corporate hierarchies and investment relationships. This
architecture enables automatic balance sheet generation, real-time settlement with instant finality,
regulatory-compliant token transfers, and sophisticated capital operations including capital calls,
distributions, and secondary transfers with right of first refusal. We present the formal model,
smart contract architecture, and demonstrate how this approach reduces operational overhead by
orders of magnitude while increasing transparency and reducing settlement risk to zero.

Contents

1

Introduction
1.1 Design Principles e

The Hierarchical Ownership Graph

2.1 Formal Model e

2.2 Owner Hierarchy e

2.3 Wallet Architecture e
2.3.1 Wallet Ownership

2.4 Token Model e

2.5 Lot-Level Accounting

Balance Sheet Representation

3.1 Double-Entry On-Chain e
3.2 Asset Classification e
3.3 Liability Tracking« . o e
3.4 Net Asset Value Calculation

Automatic Ledgering

4.1 Event-Driven Accounting e
4.2 The Subgraph as Ledger e
4.3 Reconciliationo e

Real-Time Settlement

5.1 Atomic Execution e
5.2 Settlement Finality L
5.3 Comparison with Traditional Markets

Compliance Architecture
6.1 Modular Compliance L
6.2 Attestation-Based Identityo

7 Primary Capital Raises

7.1 Offering Lifecycle e
7.2 Offering Configuration L e
7.3 Subscription Flow
7.3.1 Direct Offerings (Company Equity, Debt)
7.3.2 Fund Offerings (LP Units)
7.4 Regulation Compliance L
7.5 Document Integration
7.6 Payment Rails e
8 Capital Operations
8.1 Capital Calls e
8.1.1 Token Economics e
8.1.2 Commitment Lifecycle
8.2 Distributions L
8.2.1 Waterfall Calculation
8.2.2 Atomic Execution via Batched UserOps
8.3 Fund Fees e e e e
8.3.1 Management Fees L Lo
8.3.2 Carried Interest L
8.3.3 NAV with Fee Accrual
8.4 Secondary Transfers
9 Tax Infrastructure
9.1 Cost Basis Tracking e
9.2 Wash Sale Detection e
9.3 K-1 Generation e e e e e e
10 Use Cases
10.1 Fund Administration e e e
10.2 Private Companies
10.3 Private Credit e
11 Architecture
11.1 Smart Contract Layer
11.1.1 Infrastructure Contracts
11.1.2 Domain Factories L e
11.1.3 Upgradeability e
11.1.4 Hierarchical Access Control
11.1.5 Identity and Compliance Verification
11.2 Indexing Layer e
11.3 Application Layer e
12 Security Considerations
12.1 Smart Contract Security
12.2 Access Control oL
12.3 Privacy o L e e
13 Governance
13.1 Protocol vs. Platform
13.2 Protocol Governance Lo e
13.2.1 Current Model e e
13.2.2 Future Considerations i i e e
13.3 Entity Governance L e

13.3.1 On-Chain Voting and Execution

14 Conclusion

11
11
11
11
11
11
12
12
13
13
13
13

13
13
14
14

14
14
14
15

15
15
15
15
15
16
16
17
18

18
18
18
18

19
19
19
19
19
20
20

20

1 Introduction

The infrastructure underpinning private capital markets remains fragmented, opaque, and opera-
tionally burdensome. Fund administrators, transfer agents, and legal counsel spend countless hours
reconciling cap tables, tracking beneficial ownership, processing capital calls, and generating investor
statements. Meanwhile, investors often wait weeks for settlements, lack real-time visibility into their
holdings, and face significant friction when seeking liquidity through secondary sales.

CapSign Protocol addresses these challenges by reconceptualizing ownership not as a set of isolated
token balances, but as a hierarchical ownership graph—a structured representation of who owns what,
through which entities, subject to what restrictions, and with what associated rights and obligations.

1.1 Design Principles

The protocol is built on four foundational principles:

1. Hierarchical Composability: Ownership naturally forms hierarchies. An individual owns
shares in an LLC, which owns units in a fund, which owns equity in portfolio companies. The
protocol must represent these nested structures natively.

2. Full Balance Sheet: Assets and liabilities are two sides of the same coin. A token representing
a receivable is simultaneously an asset to the holder and a liability to the issuer. The protocol
maintains this duality.

3. Automatic Ledgering: Every on-chain action generates an auditable journal entry. The ledger
is not a separate system to be reconciled—it is the chain state.

4. Real-Time Settlement: Transactions settle atomically at execution time. There is no T+1,
T+2, or T+N. Finality is immediate.

2 The Hierarchical Ownership Graph
2.1 Formal Model

Let G = (V, E) be a directed acyclic graph where:
o V=8UWUT UL is the vertex set, partitioned into:

— &: Entities (individuals, corporations, trusts, funds)
— W: Wallets (smart contract accounts)
— 7T: Tokens (fungible and non-fungible instruments)

— L: Lots (specific tranches of token holdings)
e FF CV xV is the edge set representing ownership, control, and delegation relationships
For any vertex v € V, we define:

e parent(v): The immediate owner or controller of v

children(v): The set of vertices owned or controlled by v

ancestors(v): The transitive closure of parent

descendants(v): The transitive closure of children

Type Description Examples

INDIVIDUAL Natural person Investor, founder
CORPORATION C-Corp or S-Corp Delaware C-Corp
LLC Limited liability company Fund vehicle
TRUST Legal trust structure Family trust
PARTNERSHIP LP or GP Fund GP

FUND Investment vehicle VC fund, PE fund
DAO Decentralized organization =~ Wyoming DAO LLC

Table 1: Owner types in the CapSign Protocol

2.2 Owner Hierarchy

Owners form the root of ownership chains. The ownership graph is agnostic to owner type—individuals,
legal entities, trusts, and any other organizational form can participate. Table 1 shows common owner
types, but the protocol imposes no constraints on what can be represented.

For legal entity classification, the protocol uses ISO 20275 Entity Legal Form (ELF) codes, main-
tained by GLEIF. This international standard provides identifiers for legal entity types across ju-
risdictions. For emerging structures not yet assigned ELF codes—such as Wyoming DAO LLCs or
other novel formations—we define provisional codes and aim to contribute them to the standard as
these structures gain regulatory recognition. Individuals are classified separately as natural persons.
This approach ensures interoperability with global financial infrastructure while accommodating both
traditional and novel ownership structures.

Each entity is associated with exactly one primary wallet—a smart contract account that holds the
entity’s on-chain assets and executes transactions on its behalf.

2.3 Wallet Architecture

Wallets in CapSign are not simple externally-owned accounts (EOAs). They are diamond prozies
implementing EIP-2535, enabling modular functionality through composable facets:

WalletCoreFacet // Identity, metadata, ownership
WalletSignatureFacet // EIP-1271 signature validation
AccessManagedFacet // Role-based permissions

TokenHolderFacet // Receive and manage tokens
CapitalCallFacet // Fund capital operations
InvestmentFacet // Portfolio tracking
DocumentsFacet // On-chain document registry

Listing 1: Core wallet facets
This architecture enables wallets to evolve over time. A startup’s wallet may initially include basic
token issuance capabilities, then add cap table management, then compliance modules, then liquidity
features—all without deploying a new contract or migrating assets.

2.3.1 Wallet Ownership

Each smart wallet has one or more owners who can authorize transactions. Owners can be:

e Passkeys: WebAuthn credentials backed by device biometrics (Face ID, Touch ID, Windows
Hello) and cloud-synced across devices. This enables a fully self-custodial experience without
seed phrases.

e EOAs: Traditional Ethereum accounts controlled by private keys. These may be held directly
by the user or managed by a qualified custodian.

e Custodial Keys: For institutional investors, private keys can be held within a custodian’s secure
infrastructure. The custodian enforces its own signing policies—approval workflows, spending
limits, whitelists—within its firewall before broadcasting transactions to the network.

This flexibility allows retail investors to use familiar biometric authentication while institutions main-
tain their existing custody arrangements and compliance controls.

2.4 Token Model

Tokens represent ownership interests, debt obligations, or other financial instruments. Each token is
itself a diamond proxy with configurable facets:

e TokenERC20Facet: Standard ERC-20 interface

TokenERC4626Facet: Vault standard for yield-bearing tokens

e TokenComplianceFacet: Transfer restrictions and compliance

TokenLotFacet: Tax lot tracking for cost basis

TokenDistributionFacet: Dividend and distribution logic

2.5 Lot-Level Accounting

Unlike standard ERC-20 implementations that track only aggregate balances, CapSign maintains lots—
individual tranches of token holdings with distinct metadata:

Lot = (holder, token, quantity, costBasis, acquisitionDate, transferType)

Transfer conditions such as vesting schedules, lockups, and holding periods are attached to lots via
modular compliance infrastructure rather than embedded in the lot tuple. This separation of concerns
allows:

e Different compliance rules applied to different lots of the same token
e Dynamic modification of transfer conditions without reissuing lots
e Composable compliance modules that can be mixed and matched
Lot-level tracking enables:
e Specific identification for tax optimization (FIFO, LIFO, HIFO, specific lot)
e Per-lot vesting schedules
e Wash sale detection

e Vintage tracking for fund investments

3 Balance Sheet Representation

3.1 Double-Entry On-Chain

Every token transfer in CapSign implicitly represents a double-entry accounting transaction. When
Entity A transfers 100 shares of Token X to Entity B:

The protocol indexes these events, enabling real-time balance sheet generation for any entity at any
point in time.

Entity Account Debit Credit

A Equity Investments 100
B Equity Investments 100

Table 2: Automatic journal entry from token transfer

3.2 Asset Classification

Assets held by a wallet are automatically classified based on token metadata:
e Cash & Equivalents: Stablecoins (USDC, USDT), money market tokens
e Investments: Equity tokens, LP units, convertible notes
e Receivables: Tokenized invoices, notes receivable

e Fixed Assets: Tokenized real estate, equipment

3.3 Liability Tracking
The same token may represent an asset to one party and a liability to another. When a company

issues debt tokens:

For Issuer : Liabilities <— Liabilities + Principal
For Holder : Assets < Assets + Principal
The protocol maintains this duality through the admin field on each token, linking back to the issuing

entity.
3.4 Net Asset Value Calculation
For investment vehicles, the protocol computes real-time NAV:

NAV= Y Value(i))— > Value(j)

i€Holdings j€Liabilities
Where Value(7) is determined by:
e Market price (for liquid tokens)
e Last round valuation (for portfolio companies)
e On-chain oracle (for yield-bearing vaults)

e Manual mark-to-market (for illiquid positions)

4 Automatic Ledgering

4.1 Event-Driven Accounting

All protocol actions emit structured events that are indexed by a subgraph:

event Transfer(address indexed from, address indexed to, uint256 amount);
event LotCreated(address indexed holder, uint256 lotId, uint256 quantity);
event CapitalCallCreated(uint256 indexed callld, uint256 amount) ;

event ContributionReceived(uint256 indexed callld, address indexed member);
event DistributionExecuted(uint256 indexed distId, uint256 totalAmount);
event InvestmentCreated(uint256 indexed investmentId, address target);
event ValuationUpdated(uint256 indexed investmentId, uint256 newValue);

Listing 2: Core protocol events

4.2 The Subgraph as Ledger
The protocol’s subgraph maintains materialized views of:
e Activity Feed: Chronological record of all transactions
e Balance History: Point-in-time balances for any account

e NAV History: Daily snapshots of fund valuations

Capital Account: Partner-level capital account statements
e Tax Lots: Cost basis and holding periods for all positions

This eliminates the need for separate accounting systems. The blockchain is the ledger.

4.3 Reconciliation
Traditional fund administration requires reconciliation between:
e Custodian records
e Transfer agent records
e General ledger
e Investor statements

In CapSign, these are all derived from the same source of truth—the on-chain state. Reconciliation is
not a periodic batch process; it is continuous and automatic.

5 Real-Time Settlement

5.1 Atomic Execution

All CapSign transactions execute atomically within a single Ethereum transaction. A capital call, for
example:

1. Verifies member eligibility

2. Transfers payment tokens from member to fund
3. Mints LP tokens to member

4. Updates capital account records

5. Emits indexable events

If any step fails, the entire transaction reverts. There is no partial state.

5.2 Settlement Finality

Once a transaction is included in a finalized block, settlement is complete. On Ethereum L2s like Base,
this occurs within seconds. There is no:

e (learing house

e Settlement window
e Counterparty risk
e Failed settlement

The implications for capital efficiency are profound. Funds can deploy capital immediately upon
receipt. Investors can verify their holdings in real-time.

5.3 Comparison with Traditional Markets

Market Settlement Time Counterparty Risk
US Equities T+1 Yes
Private Equity T+430 to T490 Yes
Real Estate T+30 to T+60 Yes
CapSign Protocol ~ T+0 (seconds) No

Table 3: Settlement comparison across market types

6 Compliance Architecture

6.1 Modular Compliance

Token transfers are subject to a configurable compliance pipeline:

canTransfer(from, to, amount) = /\ m.check(from,to, amount)
m&EModules

Standard modules include:
e AccreditedInvestorModule: Verifies accreditation status
o KYCModule: Ensures KYC/AML compliance
e MaxHoldersModule: Enforces shareholder limits (e.g., 99 for 3(c)(1))

LockupModule: Enforces holding periods
e TransferRestrictionsModule: Issuer approval for transfers

¢ ROFRModule: Right of first refusal for secondary sales

6.2 Attestation-Based Identity

Rather than storing PII on-chain, CapSign uses attestations—cryptographic proofs that a trusted
party has verified a claim:

struct Attestation {

bytes32 schemald; // e.g., "accredited-investor"
address subject; // The verified address
address attester; // The wverifying party

uint64 expirationTime; // Validity period
bytes data; // Encoded claim data

Listing 3: Attestation structure
This enables compliance verification without exposing sensitive data on-chain.
7 Primary Capital Raises

The protocol provides comprehensive infrastructure for primary issuance—the initial sale of securities
from issuer to investor.

7.1 Offering Lifecycle

An offering progresses through defined states:
1. Draft: Issuer configures terms, compliance requirements, and documentation
2. Open: Offering accepts subscriptions from qualified investors
3. Closed: Subscription period ends, final allocations determined

4. Settled: Tokens issued, funds transferred, offering complete

7.2 Offering Configuration
Each offering specifies:
e Token: The security being offered (equity, debt, LP units)
e Price: Per-unit price or pricing formula
e Allocation: Minimum/maximum investment amounts
e Compliance Modules: Required investor qualifications

e Documents: Subscription agreements, PPMs;, side letters

7.3 Subscription Flow
The subscription flow differs based on offering type:

7.3.1 Direct Offerings (Company Equity, Debt)
1. Investor discovers offering and reviews materials
Investor completes required attestations (KYC, accreditation)
Investor signs subscription documents on-chain
Investor transfers payment (stablecoin or fiat bridge)
Issuer reviews and accepts subscription

Tokens are minted directly to investor’s wallet

Noe ok e

Lot record created with cost basis and acquisition date

7.3.2 Fund Offerings (LP Units)
Funds can operate in two modes depending on their investment strategy:
Commitment-Then-Funding Mode. Traditional PE/VC funds use the industry-standard com-
mitment model:

1. Investor signs subscription agreement, committing to invest (e.g., $1M)

2. GP accepts subscription—investor is now an LP with a commitment, not tokens

3. Commitment is recorded on-chain (but no tokens minted yet)

4. Over time, GP issues capital calls for portions of committed capital

5. As LP funds each capital call, tokens are minted at current NAV per token

6. For the initial call, 1 token = $1; subsequent calls mint at prevailing NAV

Why this matters for compliance: Under Section 3(c)(1), beneficial ownership is determined by
who actually holds fund interests—not who has promised to invest. By minting tokens only upon
funding, an LP who defaults on a capital call was never a beneficial owner. The fund can simply
reallocate that commitment without secondary market mechanics.

Direct Funding Mode. Funds with immediate deployment strategies—such as DeFi yield funds
that deploy capital to protocols like Morpho, Aave, or Compound—can operate like direct offerings:

1. Investor subscribes with payment

2. Fund wallet receives capital and deploys it in the same transaction (or block)
3. LP tokens are minted immediately to the investor
4.

NAYV per token reflects the fund’s on-chain positions in real-time

This mode eliminates the commitment/call cycle entirely, enabling instant liquidity deployment. It’s
particularly suited for tokenized yield strategies where capital is always fully deployed and NAV is
continuously computable from on-chain state.

The entire flow executes on-chain with cryptographic signatures, eliminating wet signatures, wire
transfers, and manual reconciliation.

7.4 Regulation Compliance

The protocol supports multiple exemption frameworks:

Exemption Key Requirements Protocol Support

Reg D 506(b) Accredited + 35 sophisticated AccreditedInvestorModule

Reg D 506(c) Verified accredited only VerifiedAccreditedModule
Reg S Non-US persons GeographyModule

Reg A+ $75M limit, qualified TieredOfferingModule
Reg CF $5M limit, any investor CrowdfundingModule
3(c)(1) 100 beneficial owners MaxHoldersModule

3(c)(7) Qualified purchasers only QualifiedPurchaserModule

Table 4: Regulatory exemption support

7.5 Document Integration

Offering documents are registered on-chain with content-addressed storage:

Documentld = keccak256(content)

This ensures:
e Immutable record of what was disclosed
e Cryptographic proof of investor acknowledgment
e Tamper-evident audit trail

e Integration with e-signature workflows

7.6 Payment Rails

The protocol supports multiple payment methods:

e Stablecoin: Direct USDC/USDT transfer (instant settlement)
e Fiat Bridge: ACH/wire via integrated banking partner

e Crypto: ETH or other tokens with on-chain conversion

All payment methods result in the same on-chain outcome: tokens in the investor’s wallet, funds in
the issuer’s wallet.

10

8 Capital Operations
8.1 Capital Calls

Capital calls are the mechanism by which GPs draw down committed capital from LPs:

1. Call Creation: GP creates a capital call specifying amount per unit, due date, and purpose

2. Obligation Calculation: System calculates each LP’s pro-rata obligation based on their com-
mitment

Notification: LPs receive on-chain notification of amount due
Contribution: LP transfers the called amount (stablecoin or fiat bridge)

Token Minting: Upon receipt of funds, LP tokens are minted to the contributor

S T

Default Handling: If LP fails to fund, commitment is marked as defaulted

8.1.1 Token Economics

Tokens are minted at the current NAV per token at the time of each capital call:

Capital Contributed
NAV per Token

For the initial capital call (before any fund activity), NAV per token is set to $1.00 by convention.
Subsequent capital calls mint tokens at the prevailing NAV:

Tokens Minted =

Total Fund Assets — Liabilities — Accrued Fees

NAV Token =
ber Lokel Total Tokens Outstanding

This ensures all LPs—whether they funded in the first call or a later one—receive tokens proportional
to their economic contribution relative to the fund’s current value. An LP joining via a later capital
call when the fund has appreciated receives fewer tokens per dollar, reflecting that existing LPs created
that appreciation.

8.1.2 Commitment Lifecycle

Commitments are tracked separately from token ownership:

Status Description Token Impact
ACTIVE In good standing Tokens minted as funded
DEFAULTED Failed capital call No further tokens; may forfeit

CANCELLED GP cancelled pre-funding None (never a beneficial owner)
WITHDRAWN LP exited (if permitted) Tokens redeemed

Table 5: Commitment status lifecycle

8.2 Distributions

Distributions flow capital from the fund back to LPs according to the fund’s waterfall structure.
The protocol implements a hybrid off-chain/on-chain architecture that combines the computational
flexibility of off-chain calculation with the verifiability and atomicity of on-chain execution.

8.2.1 Waterfall Calculation

Distribution waterfalls—the rules governing how proceeds are allocated among LPs, GP, and carried
interest—can be arbitrarily complex: preferred returns, catch-up provisions, tiered carry, clawback
reserves, and LP-specific side letter terms. Rather than encoding this complexity in smart contracts

11

(which would be gas-prohibitive and inflexible), the protocol calculates waterfalls off-chain using the
subgraph as its data source.
The subgraph maintains complete capital account history for each LP:

e Cumulative contributions (funded capital calls)

e Cumulative distributions received

Unreturned capital balance

Preferred return accrual

Current profit/loss position

The application layer queries this data, applies the fund’s waterfall logic (which may include custom
terms per LP), and computes the precise distribution amount for each member.

8.2.2 Atomic Execution via Batched UserOps

Once the waterfall is calculated, the fund manager reviews and approves the distribution. The ap-
plication then constructs a batch of ERC-4337 UserOperations—one transfer per recipient—bundled
into a single transaction from the fund wallet:

// Fund wallet ezecutes batch of transfers as single atomic tz
FundWallet.executeBatch([

{ to: LP1, value: 0, data: transfer(LP1, 50000 USDC) },

{ to: LP2, value: 0, data: transfer(LP2, 30000 USDC) },

{ to: LP3, value: 0, data: transfer(LP3, 20000 USDC) },

{ to: GP, wvalue: 0, data: transfer(GP, 10000 USDC) }, // Carry
s

Listing 4: Batched distribution execution
This architecture provides:

Atomicity: All distributions succeed or all revert—mno partial distributions

e Verifiability: The on-chain transaction is the auditable record; anyone can verify amounts
match the waterfall

Efficiency: Single transaction regardless of LP count, minimizing gas overhead

Flexibility: Waterfall logic can be updated without contract changes
Distribution events are indexed by the subgraph, updating each LP’s capital account and generating
the accounting records needed for K-1 preparation.

8.3 Fund Fees

The protocol supports on-chain fee accrual and settlement. The mechanics described here reflect the
typical PE/VC model, but the protocol is agnostic to fee structure—funds can implement fees as:

e Cash payment (traditional): GP receives stablecoin, immediate liquidity, ownership percentage
unchanged

e Token dilution (DeFi-style): GP receives newly minted LP tokens, increasing their ownership
stake but deferring liquidity—aligning GP compensation with fund performance

The choice depends on fund structure and GP preference. Below we describe the traditional cash-based
model.

12

8.3.1 Management Fees

Management fees (typically 1.5-2% annually on committed or invested capital) are paid in cash (sta-
blecoin) from fund assets to the GP:

Annual Rate
4
Where Fee Basis is either committed capital (during investment period) or invested capital (after

investment period), per the fund’s LPA. The fee payment is executed as a stablecoin transfer from the
fund wallet to the GP wallet, reducing fund NAV directly.

Quarterly Fee = Fee Basis x

8.3.2 Carried Interest

Carried interest (typically 20% of profits above a hurdle) is calculated at distribution time following
the fund’s waterfall:

1. Return LP capital contributions (return of capital)
2. Pay preferred return to LPs (if applicable)

3. GP catch-up (if applicable)
4

. Split remaining profits per carry percentage

Carry is paid in cash from distribution proceeds—the GP receives their carry allocation as part of the
batched distribution transaction, not through token minting.

8.3.3 NAYV with Fee Accrual

For accurate real-time NAV between fee payment dates, accrued but unpaid fees are deducted:

Net NAV = Gross Assets — Liabilities — Accrued Mgmt Fees — Accrued Expenses

This ensures LP token holders always see the “after-fee” value of their position, even mid-quarter.

8.4 Secondary Transfers
The protocol supports controlled secondary liquidity:

1. Seller initiates transfer request
. ROFR module notifies existing members of opportunity

. Members may exercise ROFR within specified window

2
3
4. If ROFR expires unexercised, GP may approve external transfer
5. Compliance modules verify buyer eligibility

6

. Transfer executes atomically

9 Tax Infrastructure

9.1 Cost Basis Tracking

The lot-level accounting model enables precise cost basis tracking:

Gain(lot) = SaleProceeds — CostBasis(lot)

The protocol supports multiple cost basis methods:
e FIFO (First In, First Out)
e LIFO (Last In, First Out)

13

e HIFO (Highest In, First Out)

e Specific Identification
9.2 Wash Sale Detection
For tax lots, the protocol tracks potential wash sales:

IsWashSale(sale, purchase) = [sale.date — purchase.date| < 30 days

Disallowed losses are automatically added to the cost basis of replacement shares.

9.3 K-1 Generation

For partnership structures, the protocol computes Schedule K-1 allocations:

Ordinary income

Short-term capital gains

Long-term capital gains

Interest income

Dividend income

e Section 199A deductions

These are allocated to partners based on their capital account percentages.

10 Use Cases
10.1 Fund Administration

The ownership graph transforms fund administration from a labor-intensive back-office function into
an automated, real-time system. A fund’s wallet owns its portfolio company tokens; LP wallets own
fund tokens; the graph captures this hierarchy natively.

Capital calls become on-chain notifications with automatic obligation calculation per LP. Contributions
mint tokens at current NAV. Distributions compute waterfalls off-chain and execute atomically. K-1
data is derived directly from the subgraph’s capital account history—mno reconciliation required.

For GPs managing multiple funds, the hierarchical structure enables consolidated reporting across
vehicles while maintaining strict fund-level segregation. Co-investment SPVs are simply child nodes
in the graph, inheriting compliance requirements from their parent fund.

10.2 Private Companies

Private companies use CapSign to maintain their cap table as a living on-chain record. Each share-
holder’s wallet holds tokens representing their equity; the company wallet is the token’s issuer. Option
grants, RSU vesting, and SAFE conversions execute as token operations with automatic lot creation
for tax basis tracking.

The ownership graph captures complex structures naturally: an employee holds options through their
personal wallet, which may be owned by their family trust, which may be owned by multiple benefi-
ciaries. Beneficial ownership rolls up automatically. When a 409A valuation updates, NAV per token
reflects the new fair market value across all holders.

Secondary transfers—common in late-stage private companies—execute through the compliance
pipeline with ROFR enforcement, transfer restrictions, and automatic cap table updates.

14

10.3 Private Credit

Private credit represents a natural extension of the ownership graph to debt instruments. A loan
is a token: the lender’s wallet holds an asset; the borrower’s wallet carries a corresponding liability.
Interest accruals, payment schedules, and covenant tracking are token-level operations.

For fund structures that deploy capital into credit strategies—whether direct lending, asset-based fi-
nancing, or structured products—the protocol enables same-block deployment: investor subscribes,
fund receives capital, capital deploys to Morpho or other DeFi lending protocols, all in a single trans-
action. NAV reflects on-chain positions continuously.

This architecture points toward programmable commercial banking: credit facilities where drawdowns,
repayments, and interest calculations execute automatically based on on-chain state. The line between
“fund administration” and “banking infrastructure” blurs when both are nodes in the same ownership
graph.

11 Architecture

11.1 Smart Contract Layer

The protocol is deployed on Ethereum L2 (Base) and implements the EIP-2535 diamond standard
throughout. Every entity—wallets, tokens, offerings, escrows—is a diamond proxy composed of mod-
ular facets. This architecture enables contracts to evolve over time without migration, share imple-
mentation code across instances, and maintain a single address identity throughout their lifecycle.

11.1.1 Infrastructure Contracts

The protocol’s foundation is the Diamond Factory—a generic CREATE2 factory diamond that
deploys new diamonds with deterministic addresses. The factory accepts any valid facet configuration,
enabling permissionless deployment of wallets, tokens, offerings, and other protocol entities.

CapSign Inc. additionally maintains a Facet Registry—a versioned registry of audited facet imple-
mentations used by our platform. The registry tracks facet names, versions, selectors, and deprecation
status. When deploying through the CapSign interface, the factory validates cuts against this registry,
ensuring users only deploy approved, audited code. This is an operational security measure for our
platform; developers building directly on the protocol may use the Diamond Factory without registry
validation if they prefer to manage their own facet security.

11.1.2 Domain Factories

Specialized factory diamonds provide high-level APIs for creating protocol entities:

e Wallet Factory: Creates wallet diamonds for entities with configurable facet sets (core, signa-
ture, documents, identity, paymaster policy)

e Token Factory: Creates security token diamonds with ERC-20, compliance, lot tracking, and
distribution facets

e Offering Factory: Creates offering diamonds for primary issuance with compliance modules,
document management, and payment handling

e Escrow Factory: Creates escrow diamonds for holding funds during transactions with config-
urable release conditions

Each factory validates inputs, configures appropriate facets, and initializes the diamond in a single
atomic transaction.

11.1.3 Upgradeability

Because every entity is a diamond, wallets, tokens, and offerings can be upgraded to incorporate new
facets or replace existing ones. However, upgradeability follows the ownership hierarchy:

15

e CapSign Inc. publishes new facet versions to the Facet Registry. These may include bug
fixes, new features, or gas optimizations.

e Entity owners decide whether to upgrade. CapSign Inc. cannot unilaterally modify de-
ployed diamonds. Only the entity’s authorized signers can execute a diamond cut to add, replace,
or remove facets.

e Upgrades are opt-in and auditable. Each upgrade is an on-chain transaction signed by the
entity, creating a permanent record. Entities can remain on older facet versions indefinitely if
they prefer stability over new features.

This model balances the benefits of upgradeable infrastructure (bug fixes, feature additions) with entity
sovereignty—no one can modify your contracts without your explicit authorization.

11.1.4 Hierarchical Access Control

Access control follows the ownership hierarchy. Every diamond includes an AccessControlFacet
providing local role-based permissions using efficient bit-flags (supporting 256 roles per user). Critical
to the architecture is the authority delegation pattern:

1. When an issuer wallet creates a token, the token’s authority is set to the issuer wallet address

2. The issuer wallet includes a WalletAccessManagerFacet implementing OpenZeppelin’s
TAccessManager interface

3. When protected functions on the token are called, the token first checks with its authority (the
wallet) whether the caller is permitted

4. The wallet checks if the caller has the appropriate role on the wallet itself

This pattern means permissions flow through the ownership graph: an entity’s wallet controls its
tokens and offerings, and the entity’s authorized signers can operate those instruments according to
their assigned roles. There is no global “protocol-level” access manager—each wallet manages its own
permissions for its owned assets.

// Token checks 4ts authortty (issuer wallet) for permisstons

function transfer(address to, uint256 amount) external {
if (!canCall(msg.sender, this.transfer.selector)) revert Unauthorized();
_transfer(msg.sender, to, amount);

function canCall(address caller, bytes4 selector) internal view returns (bool) {

// First check exzternal authority (issuer wallet)
if (authority != address(0)) {

(bool allowed,) = IAccessManager(authority).canCall(

caller, address(this), selector);

if (allowed) return true;
}
// Fall back to local role checks
return hasRole(caller, requiredRole[selector]);

Listing 5: Authority delegation for access control

11.1.5 Identity and Compliance Verification

The protocol supports two complementary modes for investor identity verification, selectable per of-
fering based on issuer preference:

16

Direct Verification Mode. Issuers or their designated KYC providers record verification status
directly on the offering diamond via the ComplianceAdminFacet. This stores KYC status and investor
classifications (accredited, qualified purchaser, sophisticated, etc.) in the offering’s on-chain storage.
The issuer can designate trusted third-party KYC providers who are authorized to set verification
status on their behalf.

// Issuer or trusted provider sets investor KYC status
ComplianceAdminFacet (offering) .setKYCStatus(

investor, // Investor wallet address

true, // Verified

expirationTime // Optional expiration (0 = never)

)

// Set investor classification (accredited, qualified purchaser, etc.)
ComplianceAdminFacet (offering) .setClassificationStatus(
investor,
[keccak256 ("ACCREDITED"), keccak256("QUALIFIED_PURCHASER")],
expirationTime

)

Listing 6: Direct KYC verification by issuer
This mode is simpler, faster (direct storage access), and gives issuers full control over who can invest.
The tradeoff is that verification is offering-specific—investors must be verified separately for each
offering.

Portable Attestation Mode. Investors store Ethereum Attestation Service (EAS) attestation
UIDs on their wallet diamonds via the WalletIdentityFacet. These attestations are portable: an
investor verified once can present the same attestation across multiple offerings. Compliance modules
query the investor’s wallet for relevant attestations during subscription.

This mode reduces friction for repeat investors and enables third-party attestation providers to issue
credentials once that work protocol-wide. The tradeoff is additional complexity and reliance on external
attestation infrastructure.

Hybrid Approach. Compliance modules support both modes simultaneously. During compliance
checks, modules first query the offering’s direct storage (cheapest path), then fall back to checking
wallet attestations if provided. This allows issuers to use whichever mode fits their workflow while
investors benefit from portable credentials when available.

11.2 Indexing Layer

A Graph Protocol subgraph indexes all protocol events, maintaining materialized views that would be
prohibitively expensive to compute on-chain:

e Activity Feed: Chronological record of all protocol actions with rich metadata
e Balance Snapshots: Point-in-time balances for any account, enabling historical queries
e N AV History: Daily fund valuations computed from on-chain asset positions and price feeds

e Capital Accounts: Partner-level capital account statements with contribution/distribution
history

e Tax Lot History: Complete audit trail of lot creation, transfers, and dispositions with cost
basis

The subgraph transforms raw blockchain events into queryable accounting records, eliminating the
need for separate off-chain databases while maintaining the blockchain as the authoritative source of
truth.

17

11.3 Application Layer

CapSign provides a web application serving as the primary interface to the protocol:

Entity Onboarding: KYC/AML verification, accreditation checks, entity structuring

Wallet Management: Passkey-based authentication, signer management, role assignment

Token Operations: Issuance, transfers, corporate actions, cap table visualization

Fund Administration: Capital calls, distributions, NAV calculations, investor statements
e Document Workflow: Template generation, e-signature collection, on-chain registration

e Investor Portal: Holdings dashboard, document access, subscription management

The application uses account abstraction (ERC-4337) for gasless transactions, enabling traditional user
experiences without requiring users to hold ETH or understand blockchain mechanics. Gas sponsorship
operates at two levels:

e Protocol Paymaster: CapSign Inc. operates a paymaster that sponsors transactions for plat-
form users, abstracting away gas costs entirely for standard operations.

e Wallet Paymaster Policies: Each wallet can configure its own sponsorship policy, enabling
entities to sponsor gas for their investors, employees, or related wallets. For example, a fund
wallet can sponsor all transactions from its LPs, or a corporate wallet can sponsor its subsidiaries.
This creates a gas sponsorship hierarchy that mirrors the ownership graph.

12 Security Considerations

12.1 Smart Contract Security
All protocol contracts undergo:
e Formal verification of critical invariants
e Multiple independent security audits
e Bug bounty programs

e Gradual rollout with upgrade timelock

12.2 Access Control

The protocol implements defense-in-depth:
e Role-based access control (RBAC)
e Multi-signature requirements for sensitive operations
e Time-delayed execution for administrative changes

e Account abstraction for improved key management

12.3 Privacy
Sensitive data handling:
e PII stored off-chain with encrypted references
e Attestations prove claims without revealing data

e Zero-knowledge proofs for selective disclosure (roadmap)

18

13 Governance

13.1 Protocol vs. Platform

A critical distinction: the protocol is code—permissionless smart contracts deployed on a public
blockchain. Code cannot be regulated; it simply executes according to its logic. Anyone can interact
with the deployed contracts directly, build alternative interfaces, or fork the codebase.

CapSign Inc. is a business entity that operates a platform—an interface to the protocol. The company
is subject to applicable regulations, maintains compliance programs, and can be held accountable.
When institutional investors require a responsible counterparty, they contract with CapSign Inc., not
with the protocol.

This separation is fundamental: the protocol provides infrastructure; the platform provides service.
Users who prefer self-custody and direct contract interaction can use the protocol without CapSign Inc.
Users who want a managed experience with support, compliance, and accountability use the platform.

13.2 Protocol Governance

The protocol has parameters that require ongoing stewardship:

e Facet Registry: Which facet implementations are approved for deployment through the Cap-
Sign platform. New facets require security audits before registration.

e Factory Configuration: Creation fees on token and offering factories, treasury addresses, and
payment discounts.

e Paymaster Policies: Which operations the protocol paymaster sponsors, rate limits, and abuse
prevention.

Note on fees: As of this writing, no protocol fees are enabled—deploying tokens and offerings through
the factories is free. The factory contracts include fee parameters that can be activated in the future,
but there is no current timeline for doing so.

13.2.1 Current Model

CapSign, Inc. currently serves as protocol steward with the following responsibilities:

e Maintaining and auditing smart contract code

Operating infrastructure (subgraph indexers, bundlers, paymasters)

Responding to security incidents

Coordinating with regulators and legal counsel

Making protocol upgrade decisions

All protocol contracts are deployed with transparent, verifiable code. Users retain self-custody of their
assets and can interact with deployed contracts directly—the protocol is permissionless at the contract
layer even while the CapSign platform provides a curated experience.

13.2.2 Future Considerations

As the ecosystem matures, protocol stewardship may evolve to include input from major stakeholders
(fund administrators, institutional users, infrastructure operators). The protocol layer could eventually
operate with minimal ongoing governance—immutable contracts that simply work. Platform-level
governance (CapSign Inc.’s policies, compliance programs, service terms) will continue to evolve with
regulatory requirements and customer needs, but that is distinct from protocol governance.

19

13.3 Entity Governance

While protocol governance is centralized, entity governance is fully configurable by each organization
using the protocol:

e Signing Thresholds: Multi-signature requirements for different operation types (e.g., 2-of-3
for transfers, 3-of-5 for distributions)

¢ Role-Based Permissions: Granular roles (admin, operator, viewer) with function-level access
control. Signers can be scoped to specific operations.

e Signer Types: Support for both EOA signers and passkey-based authentication, enabling secure
access without seed phrase management.

e Document-Based Resolutions: On-chain registration of board resolutions, member votes,
and governance documents with cryptographic proof of acknowledgment.

e Delegation: Authorized signers can be granted limited roles (e.g., a fund accountant who can
view but not transfer, or a compliance officer who can approve KYC but not execute trades).

13.3.1 On-Chain Voting and Execution

For entities requiring formal member voting, the protocol integrates with the OpenZeppelin Governor
pattern. Token holders can propose actions, vote on-chain, and—upon reaching quorum and approval—
execute the outcome directly through the entity wallet. This enables:

¢ Binding Votes: Voting results are not merely advisory; approved proposals execute automati-
cally via the entity wallet

e Transparent Process: Proposal creation, voting, and execution are fully on-chain and au-
ditable

e Configurable Parameters: Quorum thresholds, voting periods, proposal thresholds, and time-
locks are set per entity

e Token-Weighted Voting: Voting power derived from token ownership, with support for dele-
gation

This is particularly relevant for funds structured as DAQOs, SPVs with many members, or any entity
where material decisions require formal member approval with verifiable outcomes.

This separation—centralized protocol governance with decentralized entity governance—reflects the
reality that protocols need accountable stewards while organizations need flexible, self-sovereign control
over their own operations.

14 Conclusion

CapSign Protocol represents a fundamental reimagining of private capital markets infrastructure. By
modeling ownership as a hierarchical graph, maintaining full balance sheet representation, enabling
automatic ledgering, and providing real-time settlement, the protocol eliminates entire categories of
operational overhead while increasing transparency and reducing risk.

The implications extend beyond operational efficiency. When ownership is unambiguous, settlement is
instant, and records are immutable, new possibilities emerge: frictionless secondary markets, real-time
NAYV lending, automated compliance, and global access to private market opportunities.

We believe this architecture will become the standard for representing ownership in the digital age.

Acknowledgments

The CapSign team thanks Nick Mudge, creator of EIP-2535 (the diamond standard), whose modular
proxy architecture forms the foundation of our smart contract design. We thank our angel investors for
their early belief in this vision. We also thank the Ethereum community, the Base team at Coinbase,

20

the ERC-4337 account abstraction contributors, and the broader ecosystem for the infrastructure upon
which this protocol is built.

References

[1] Nick Mudge, EIP-2535: Diamonds, Multi-Facet Prozy, Ethereum Improvement Proposals, 2020.
https://eips.ethereum.org/EIPS/eip-2535

[2] Vitalik Buterin, Yoav Weiss, Dror Tirosh, et al., ERC-4337: Account Abstraction Using Alt Mem-
pool, Ethereum Improvement Proposals, 2021.
https://eips.ethereum.org/EIPS/eip-4337

[3] Ethereum Attestation Service, EAS: A Standard for Ethereum Attestations, 2023.
https://attest.org

[4] Coinbase, Base: Ethereum L2, 2023.
https://base.org

21

https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-4337
https://attest.org
https://base.org

	Introduction
	Design Principles

	The Hierarchical Ownership Graph
	Formal Model
	Owner Hierarchy
	Wallet Architecture
	Wallet Ownership

	Token Model
	Lot-Level Accounting

	Balance Sheet Representation
	Double-Entry On-Chain
	Asset Classification
	Liability Tracking
	Net Asset Value Calculation

	Automatic Ledgering
	Event-Driven Accounting
	The Subgraph as Ledger
	Reconciliation

	Real-Time Settlement
	Atomic Execution
	Settlement Finality
	Comparison with Traditional Markets

	Compliance Architecture
	Modular Compliance
	Attestation-Based Identity

	Primary Capital Raises
	Offering Lifecycle
	Offering Configuration
	Subscription Flow
	Direct Offerings (Company Equity, Debt)
	Fund Offerings (LP Units)

	Regulation Compliance
	Document Integration
	Payment Rails

	Capital Operations
	Capital Calls
	Token Economics
	Commitment Lifecycle

	Distributions
	Waterfall Calculation
	Atomic Execution via Batched UserOps

	Fund Fees
	Management Fees
	Carried Interest
	NAV with Fee Accrual

	Secondary Transfers

	Tax Infrastructure
	Cost Basis Tracking
	Wash Sale Detection
	K-1 Generation

	Use Cases
	Fund Administration
	Private Companies
	Private Credit

	Architecture
	Smart Contract Layer
	Infrastructure Contracts
	Domain Factories
	Upgradeability
	Hierarchical Access Control
	Identity and Compliance Verification

	Indexing Layer
	Application Layer

	Security Considerations
	Smart Contract Security
	Access Control
	Privacy

	Governance
	Protocol vs. Platform
	Protocol Governance
	Current Model
	Future Considerations

	Entity Governance
	On-Chain Voting and Execution

	Conclusion

